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COMPLETE CONTROLLABILITY OF LINEAR DYNAMIC SYSTEMS" 

A.I. OVSEYEVICH 

A complete controllability criterion is suggested for a linear dynamic 
system with bounded controls. It is shown that programmed control, 
taking the system from one state to another, can be constructed in 
guasipolynomial form. The problem of constructing such a control thus 
basically reduces to solving a linear system of equations. 

I. One of the fundamental results of control theory is the Kalman criterion /i/, which 
provides the necessary and sufficient conditions of complete controllability of dynamic 
systems of the form 

x ' =  A x + B u ,  x ~ R  n, u ~ R "  ( t . t )  

Here, A . R  n ~ R " , B : R  m ~ R n are time-independent linear operators. The Kalman criterion 
states that the pair of matrices A, B should satisfy the following condition of general 

position: rank(B. AB, ..., An-XB) = ,t 
(1.2) 

b y  

t h e  

This condition ensures that any point ~ ~ R n is reachable from any point ~ ~ R- 
moving along a trajectory of the dynamic system (i.i) with some control u = u(t). 

In this paper, we present an analogue of the Kalman criterion for the case when 
controls u in Eq.(l.l) are bounded, 

I u I < c (~.3) 

and we also provide a technique for constructing a programmed control that achieves a tran- 
sition between states. Given the constraint (1.3), the Kalman condition (1.2) is of course 
totally insufficient for complete controllability. Indeed, if all the eigenvalues of the 
matrix A have strictly negative real parts, then starting from any point ~ ~ Rn and moving 
along the tra]ectories of the system (i.i), (1.3), we will never be able to leave a certain 
bounded set, regardless of the choice of the matrix B. If conversely all the eigenvalues of 
the matrix A have strictly positive real parts, then, say, 0 ~ Rn is unreachable from a 
sufficiently distant point ~ ~ R n 

2. Let us discuss the following theorem, which was first proved in /2/ ~for some further 
results, see /3, 4/). 

Theorem I. For complete controllability of system (i.i), (1.3), it is necessary and 
sufficient that, in addition to the Kalman condition (1.2), we also have 

R e ~ ,  : 0 (2. i)  

where ~i are the eigenvalues of the matrix A. 
Let us explain the need for condition (2.1). To fix our ideas, assume that the matrix A 

has the eigenvalue ~ and 
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Rel= a<0 (2 2) 

Note that by replacing A by -A we do not change the complete controllability properties 
of system (i.i), (1.3), and the "less than" sign in condition (2.2) does not restrict the 
generality of our analysis. Let D T be the region of reachability in time T for system (i.i), 
(1.3) with initial condition z (0)= o, and h T the support function of the system. We have /5/ 

hT (~) sup (exp (A ( l " - - t ) ) B u , ~ ) f l t  ~<C I B [ I l e x p  (A* (T --t)) ~ l dt (2 3) 
lui<~c 

Here  an d  i n  w h a t  f o l l o w s ,  i n t e g r a t i o n  o v e r  t i s  f r om 0 t o  T, A* i s  t h e  t r a n s p o s e  o f  t h e  
matrix A, and I BI is the norm of the matrix B. From condition (2.2) it follows that there 
exists a vector 0 ~ R  n such that 

~ exp (A't) ~ , [ < C e x p ( a t ) ,  a < O  (24) 

To this end, it suffices to take ~ = z + 2, where x ~ Cn is the eigenvector of the 
matrix A* with eigenvalue l. which is not purely imaginary, and g is the complex-conjugate 
vector. From (2.3), (2.4) it follows that hT(g) is uniformly bounded in T, which contradicts 
complete controllability. Condition (2.1) is thus necessary. 

3. We will now show that the control u (t) taking the system from one point to another 
may be expressed as a vector quasipolynomial 

u ( t ) = ~ a k l o x p ( ~ , l c t  ) t t, a e t ~ C  n (3.t) 

where l~ are the eigenvalues of the matrix A or -A. 

Theorem 2. Let system (i.i), (1.3) be completely controllable (which by Theorem 1 implies 
that conditions (1.2) and (2.1) are satisfied). Then the system may be taken from one given 
state to another by a control of the form (3.1). 

Let the control u(t) be such that the trajectory of system (I.i) passes through the 
points ~, x,~R", z(0)= ~, z(T)=x~, T>0. This is equivalent to 

I exp (A (T - -  t)) Bu  (t) dt = x ,  - -  exp (AT) xo 

We seek u in the form u = ~ +Ul, where 

I exp(A ( T - - t ) ) B u  (t) d t = z  ( - - t ) * ,  A t = A ( - l )  t, t = 0 , 1  (3.2) 

If we find a quasipolynomial solution u,(t) of Eqs.(3.2) such that the norm [u,(t) l is 
small, e.g., does not exceed C/2, where C is the constant from (1.3), this will give a quasi- 
polynomial control that takes the system (i.i), (1.3) from a 0 to x I in time T. Note that if 
the matrix A satisfies conditions (1.2), (2.1), then Ai also satisfies these conditions. 
Therefore, finally the problem reduces to solving the equation 

T 
I exp (A ( T - - t ) )  Bu  (t) dt = x 
o 

(3.3) 

for some unknown polynomial u(t) of small norm, with matrices A, B satisfying conditions 
(1.2), (2.1) and T a sufficiently long time. 

We seek u in the form 

u =  uT,~( t  ) =  B* e x p ( A * ( T - - t ) ) ~  (34) 

Clearly (see /6/) u is a quasipolynomial. From (3.4) we naturally obtain the Euclidean 
norm i~l = (~.~)'/' of the vector ~ and also two additional norms and the operator P: 

J I ~ , T  = sup I B * o x P ( d * ( r - - t ) ) ¢ l =  sup lUT,~ ' t )  l 
O~t<-.~T O~t~gT 

(I' B.o p(A.(T = (S 
P~ = PT~ = S  exp (A (T - -  t)) B u r ,  ~ (t) dt 

In this notation, problem (3.3) reduces to solving the equation 
P~.~ = z 

for small (< c/2) norm U ~II~.T. 

(3.5) 
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Note that the existence of the solution ~ of Eq. (3.5) (without a bound on the norm 
~II®,T) follows from the Kalman condition (1.2). We see that 

(PT~, ~)= U~{,T (3.6> 

a n d  ( b y  t h e  K a l m a n  c o n d i t i o n  ( 1 . 2 ) )  
I ,~ I < 011 ~. L~.,r (3.7) 

where the constant c is independent of T. 
The main fact that makes it possible to find a solution ~ of Eq. (3.5) with a small norm 

~II=,T is supplied by the following 1emma. 

Lemma. Let condition (2.1) hold. Then as y~oo we have ~,r/~.r>cY, uniformly 

in ~0, where c is a positive constant (independent of T and ~). 
Assuming that the lemma holds, let us estimate the norm II ~II~,T of the solution ~ of Eq. 

(3.5). From (3.5), (3.6) and the lemma, we have 

(=, ~) = II ~{ ,  T > +r ! ~ P~,T (3.8) 

for large T. The Cauchy inequality and inequality (3.7) show that clz I ll~=,T>l(z, ~)J. Now 

from (3.8) ~o,T<CIxI/T (3.9) 

and therefore in particular for large T any solution E of Eq.(3.5) has a small norm JJ~L,T.  
From inequality (3.9) it also follows that we can go from the point O ~ R "  tO the point x~S" 
or in the opposite direction in time T= 9(Izl) 

It remains to prove the lemma. Let u(t)= UT, ~(t)= Zaktexp(;~t) t t, ak~C". Then Re~=0 by 
condition (2.1). 

We have u (t) = Zp~ (t) exp (L~t), where p~ are (vector-valued) polynomials whose degree does 
not exceed the maximum dimension of the Jordon cells of the matrix A with eigenvalue ~, 
where ~ is real. We have to show that the function u of this form satisfies, as T~ ~, the 
inequality 

l=II"(t)IZdt>~cr~ul]'~ T' H"+L+,T = sup l,i,(01 (3Ao) 

<(,) 

Indeed, 

I = T <1 u (T+) Iz> = T < J ~ Pk (T+) exp (tcokTT) 12> = T ]~L Jk -1" T ]~ K;a 
k~=l 

i+ = < I P+ (P+) I s>, K+ l = <(P+ (/"0, Pl (P+0) exp L (m E - -  cot)/'+~> 
I 

<! (~)> = 11 (~) dr, (~, v) = ~ ~,~,, ~, ~ ~ C" 
o 

is the standard Hermitian scalar product). 
Let P~, T (t) = pk ( Tt). Then clearly 

(3.11) 

Jk ~ clllPm,T ~o. x = <~+.tl p+< I~,  T (3.t2) 

where the constant c z depends only on the degree of the polynomials pk, or equivalently on 
the dimension of the Jordan cells of the matrix A. More-accurate calculations using Legendre 
polynomials show that c I may be taken in the form (I/degpk) z. The second term in (3.11) can 
be estimated using integration by parts: 

= / exp (+ (%:--  %) T-~) d (3.t3) 
I TK~, I I -- \ "1 (~----~+) dr (P~, T' Pt, T) (~)> + 

. .  I 
P = (P~, T, Pt, r ) '  f~ = rain ( ~  --  el) 

We have the obvious bound 

<I @ (T)/dT I > < ':, II p It+,., (3A4) 

w i t h  s o m e  c o n s t a n t  c2, a n d  t h e  known  r e s u l t s  o f  a p p r o x i m a t i o n  t h e o r y  ( s e e  / 7 / )  s u g g e s t  t h a t  
c a ~ (deg p)~ and even a tighter bound e, ~.< < I dTlv (T)/dT I >, where N = deg p, T N is a Chebyshev 
polynomial. 

Collecting inequalities (3.12)-(3.14), we obtain for the second term in (3.11) the 
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majorant 

- '~ .~ kl pe I1~, 'r II Pz L ,  r < ~-~ [~ fl Ph Ilw, T] 2 (~ 15) 

where the constant c2 depends only on the dimensions of the Jordan cells of the matrix 
(or, equivalently, on the degrees of the polynomials phl and can be bounded by 

cz ~ max (deg pk + dog p l )  ~ + 2 
h-/-I 

From inequalities (3.11), (3.12), and (3.15), we obtain 

M M 

~ = 1  k = l  

>t (cxrlM - c,/n) ( y ,  ~ Pk I1~, r )  z >~ (cxT/M - -  c~,/nhll u Jti, r 

which proves (as T ~ ~) inequality (3.10 ) and the lemma. This completes the proof of 
Theorem 2. 

4. As an example, consider a mechanical system consisting of N pendulums with a common 
suspension point. This suspension point moves in a controlled motion with bounded acceler- 
ation. In the linear approximation, the equations of motion have the form 

z " =  u, z ,  + ~ , ~ x , =  u , t =  t . . . .  , N,  l u l < t  

Here z is the displacement of the suspension point, and z, is the displacement of the ~- 
i-th pendulum. The control problem is to bring the system to rest, i.e., to take it from a 
given initial state to a state in which the displacements and the velocities are zero for all 
the pendulums and the suspension point. The previous results suggest that the problem is 
solvable for any initial state if and only if the frequencies l~il~0 are all different 
(this is an interpretation of the Kalman condition (1.2)). Following the proof of Theorem 2, 
we can also obtain a bound on the relaxation time T under quasipolynomial control u of the 
form 

The final result is expressed by the inequality (x is the initial state vector) 

T < 2 1 / m  + 21 x 1 + 4((x - -  l)/Q + V' l"~/o)  (4.1} 
x = (z, x', xl, z1", .... xN, xu" ) 

e =  m l n , N ] ~ j ]  , ~ =  min [~,J  
*, J = l ,  Z=lv , N 

A detailed derivation of the bound (4.1) is similar to the proof of Theorem 2 and requires 
fairly lengthy calculations. 

Similar results were obtained by Chernous'ko in the problem of the relaxation of a system 
of N pendulums (without relaxation of the suspension point), and in the problem of the 
relaxation of a single pendulum with its suspension point. 

I would like to acknowledge the useful comments by F.L. Chernous'ko. In particular, he 
suggested the programmed control formula (3.4) and used it to derive an explicit bound on the 
relaxation time for a system of pendulums with a common suspension point. 
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